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1. Introduction

Type IIB string theory compactified on the conifold, which is topologically a cone over

S2 × S3 [1], is interesting. It is interesting because it provides a simple example of a

background which is holographically dual to an N = 1 4-dimensional gauge theory [2].

This gauge theory is even more interesting when one wraps D5-branes around the 2 -cycle

in the conifold, as the gauge theory becomes non-conformal and cascades [3]. Thus it is

clearly of interest to have global coordinates for this 2 -cycle. Steps in the cascade may

be described by NS5-branes that sweep out the conifold’s 3 -cycle, eating D3-branes and

leaving H-flux [4, 5]. Thus one would like global coordinates for the 3 -cycle. Oddly, the

coordinates generally used for the conifold do not allow one to simultaneously describe

both cycles, instead one may see the base T 1,1 of the conifold as either an S2 bundle over

S3 [1] or as an S3 bundle over S2 [2]. This bundle may then be proven to be trivializable

via its characteristic classes [1, 2], however to describe a brane wrapping a cycle in the base

one needs an explicit trivialization.

In this note we will describe the following trivialization. Define the conifold to be the

set of degenerate 2 × 2 complex matrices W , and its base T 1,1 to be the subset which

satisfies

Tr
(
W †W

)
= 4. (1.1)

The 3-sphere will be identified with the group SU(2), whose points are special unitary

matrices X. The 2-sphere will be identified with the projective line whose elements are
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projective vectors v− of unit length. Then the point (X, v−) ∈ S3 × S2 is identified with

the point

W = 2Xv−v†− (1.2)

in T 1,1.

In subsection 2.1 we will argue that this map is well-defined and invertible and that

W is indeed an element of T 1,1. Then in subsection 2.2 we will re-express a large family

of group actions on T 1,1 in terms of the new coordinates, and provide a simple criterion

for when they are chiral. In section 3 we will consider several infinite families of chiral

and non-chiral orbifolds of the conifold, and we will see that in these coordinates one can

easily determine the topology of the base, and in particular we find the number of possible

non-anomalous wrappings of fractional branes. In some of these examples it will prove

convenient to re-express the three-sphere as a circle bundle over a two-sphere, suggesting

that our analysis may be extended to orbifolds of Y p,q [6].

2. The construction

We will check the identification (1.2) in two steps. First we will find a one-to-one identifi-

cation between the matrices W and a pair (X,Q), where Q is a traceless rank two special

unitary matrix parameterizing S2. Then we will provide a one-to-one map between Q and

the projective vectors v± ∈ CP
1 ∼= S2.

2.1 Trivializing T 1,1

To see that (1.2) is invertible, notice that given W one may reconstruct X, and also a new

quantity that we will call Y , via the decomposition

X ≡
1

2
Tr(W †)σ0 +

1

2
(W − W †) and Y ≡

i

2
Tr(W †)σ0 −

i

2
(W + W †), (2.1)

where σ0 is the 2 × 2 unit matrix. Clearly we have W = X + iY . Moreover, both X

and Y are special unitary matrices: X† = X−1, Y † = Y −1 and detX = detY = 1.

These properties follow1 directly from the degeneracy of W and (1.1). The information

not encoded in X is encoded in Y . However T 1,1 is 5-dimensional whereas X and Y each

run over a 3-dimensional space. Therefore they are related by a single constraint

TrQ = 0 where Q ≡ X†Y. (2.2)

Since Q is a traceless special unitary matrix it defines an S2, while the matrix X corresponds

to an S3. X and Q are not related by any constraints, therefore (X,Q) ∈ S3×S2 provides a

trivialization of T 1,1. Given any point W in T 1,1 one may find X via (2.1) and Q via (2.2).

This establishes the existence of the map from W to (X,Q).

The inverse map is simply

W = X + iY = X(σ0 + iQ) (2.3)

1The identity detA = 1

2
(TrA)2 −

1

2
Tr(A2), where A is an arbitrary 2 × 2 matrix, is be useful in the

derivation. Also note that the rank 1 matrix W satisfies W 2 = (TrW )W and similarly for W † .
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and so there is a one to one correspondence between the points (X,Q) on S3 ×S2 and the

points W on T 1,1. This is the first trivialization that we will provide of T 1,1, but it is not

the trivialization (1.2) that we are seeking. We still need to show that the W constructed

in (2.3) is an element of T 1,1, that is, it must be degenerate and it must satisfy (1.1). We

will now argue that this is indeed the case because X and Q are both special unitary and

Q is traceless. The fact that Q is unitary and traceless implies that its eigenvalues are +i

and −i:

Qv± = ±iv±, so Wv+ = 0 (2.4)

and hence W is singular as it has a right zero eigenvector.2 One may also show that W

has a left zero eigenvector, using the traceless special unitary matrix

Q̃ ≡ Y X†. (2.5)

Now ṽ†−W = 0, where ṽ− is an eigenvector of Q̃ with eigenvalue −i.

The trace of W †W is the sum of its eigenvalues. We have seen that v+ is an eigenvector

with eigenvalue zero. As W †W is Hermitian, its eigenvectors are orthogonal, which in

C
2 means that any vector orthogonal to v+ will be an eigenvector. Any choice of the

eigenvector v− of Q is orthogonal to v+, so it is an eigenvector of W †W . To demonstrate

that W satisfies (1.1) we therefore need only verify that v− has eigenvalue four. Using the

anti-hermiticity of Q and the unitarity of X one finds indeed that for the W constructed

in (2.3)

W †Wv− = (σ0 + iQ)X†X(σ0 + iQ)v− = (σ0 + iQ)σ0(1 + 1)v− = 4v− (2.6)

and so the eigenvalue is equal to 4 and W is a point on T 1,1.

Summarizing, we have seen that given a special unitary matrix X and a traceless

special unitary matrix Q one may construct a degenerate W satisfying the normalization

condition (1.1) using (2.3), and that given a degenerate matrix W satisfying (1.1) one may

construct a special unitary matrix X using (2.1) and a traceless special unitary matrix Q

using (2.2). This proves that (X,Q) provides a homeomorphism between T 1,1 and S3 ×S2

as claimed.

On the other hand an isomorphism between the coordinate Q and the projective unit

vector v± is provided by (2.4), which allows one to explicitly determine Q in terms of v±
and an arbitrary choice of orthonormal vector v∓:

Q = iv+v†+ − iv−v†−. (2.7)

Substituting (2.7) into (2.3) one recovers our initial claim (1.2). Alternately v+ may be

obtained directly from W , by noting that it is the unique projective zero eigenvector.

This establishes the one-to-one correspondence between points W on T 1,1 and the pairs

(X, v±) ∈ S3 × S2.

2The first equation in (2.4) shows also that Q is necessarily anti-hermitian.
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It is sometimes convenient to introduce explicit coordinates on the spheres, which can

be found using the Pauli matrix decomposition:

X = x0σ0 + i
∑

i

xiσ
i and Q = i

∑

i

qiσ
i (2.8)

where
∑4

µ=0 x2
µ = 1 and

∑3
i=1 q2

i = 1 are consequences of detX = detQ = 1.

The 3-sphere described by X can be also viewed as the Hopf fibration π : S3 → S2.

One choice of projection map is given by

π : S3 −→ S2 : X 7→ XQX† = Q̃, (2.9)

where in the rightmost expression we have used the definition of Q̃ in (2.5). For this choice

of projection map the U(1) action on X is X → XeφQ. Moreover, the matrix Q̃ provides an

alternative description of T 1,1, since one may use the pair (Y, Q̃) instead of (X,Q), which

describes W via

W = i(σ0 + iQ̃)Y. (2.10)

2.2 Group actions on T 1,1

The trivializations (X,Q) and (X, v±) are convenient for the study of orbifolds of the coni-

fold, which is our motivation. This is because left and right actions of the matrix W , whose

orbifolds create several interesting and famous backgrounds, respect this decomposition.

We will be interested in orbifolds by group actions that act on the matrix W via left

and right matrix multiplication

W −→ W ′ = OLWOR, (2.11)

where OL and OR are both unitary. As the coordinate matrices X and Q have determi-

nant one, they cannot be simply multiplied by the matrices OL,R, whose determinants are

unconstrained. Instead, to define the group action on X and Q, we will need to decom-

pose OL,R into terms proportional to the identity matrix and two by two special unitary

matrices UL,R:

OL = eiφLUL, OR = eiφRUR, where detUL,R = 1. (2.12)

If the group of transformations is compact then the term proportional to the identity will

be a pure phase and φ will be real. We will restrict our attention to this case.

Notice that the decomposition (2.12) does not uniquely define φ and U , instead they

are only defined up to the simultaneous transformation

φ −→ φ + π, U −→ −U (2.13)

for the left and or right actions. We will see momentarily that the group action of X and

Q is, as it must be, invariant under the transformation (2.13).

The action of the transformation (2.11) on the coordinates (X,Q) is:

X −→ X ′ = ULXe−(φL+φR)QUR, Q −→ Q′ = U †
RQUR. (2.14)
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To prove that (2.14) leads to (2.11) note that Q satisfies the relation eφQ = cos φ · σ0 +

sin φ · Q, which, in turn, follows directly from the fact that Q2 = −σ0. Notice also that

the determinants of X ′ and Q′ are both equal to one because the determinants of UL

and UR are equal to one and, as Q is anti-hermitian and traceless, it exponentiates to a

special unitary matrix which also has determinant one. Finally, the transformation (2.14)

is invariant under (2.13), as the transformation of the exponential term is eπQ = −σ0,

which cancels the sign flip of UL,R.

Some of the actions (2.11) respect the chiral Z2 symmetry of the world-volume gauge

theory of D3-branes at the tip of the conifold and D5-branes wrapped on 2 -cycles, while

others do not and their quotients lead to chiral world-volume gauge theories. To see which

actions preserve the chiral symmetry, we first express the degenerate matrix W as the

dyadic product of two vectors:

W =

(
A1

A2

)(
B1 B2

)
. (2.15)

The chiral symmetry interchanges Ai’s and Bi’s or, more precisely the action is

W −→ VLWTVR, (2.16)

where VL and VR are arbitrary SU(2) matrices. Plugging this into (2.11) and using (2.12)

we arrive at the conclusion that the orbifold action (2.11) preserves the chiral symmetry if

and only if the matrices UT
L and UR are conjugate, namely

UT
L = V URV † for some V ∈ SU(2). (2.17)

Geometrically the chiral Z2 symmetry interchanges the two 2-spheres, Q and Q̃T, which

are transformed by UR and UT
L respectively. Therefore (2.17) implies that a symmetry is

non-chiral if and only if the transformations of the two 2-spheres are similar. Furthermore,

if UL and UR are both diagonal, then (2.17) implies that they are equal, up to a reordering

of the diagonal entries.

3. Examples of orbifolds of the conifold

3.1 A non-singular chiral quotient

Perhaps the simplest example of a group action in this framework is the Zk group action

generated by left multiplication by the matrix OL = diag(ηk, ηk):

W −→ W ′ =

(
ηk 0

0 ηk

)
W, (3.1)

where ηk is a kth root of unity. This quotient was considered in ref. [7]. We see that in

this case φL = φR = 0, UR = σ0 and UL = OL. Using (2.14) one finds the action on X and

Q to be

X −→ X ′ =

(
ηk 0

0 ηk

)
X, Q −→ Q′ = Q. (3.2)
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Therefore this is the free Zk action on the S3 coordinate X and it leaves the S2 fixed.

The quotient is topologically just the product of the Lens space L(k, 1) = S3/Zk with the

original S2:
T 1,1

Zk
= L(k, 1) × S2. (3.3)

This space is a continuous manifold.

The condition (2.17) is not satisfied3 and so the world-volume gauge theory on a stack

of branes at the tip of a cone over this space is chiral. Of course the choice of gauge theory

depends on more than just the topology of the base, however the quotient contains the

relevant geometric data as well and so the condition (2.17) is robust.

We will now find the corresponding quiver theory using the strategy described in

refs. [8, 9]. First we observe that the group action of the generator (3.1) of Zk is

A1 −→ A1
′ = ηkA1, A2 −→ A2

′ = ηkA2, B1 −→ B1, B2 −→ B2 (3.4)

as is apparent from (2.15). Allowing all possible fractional branes corresponds to allowing

all possible actions of the Zk group action on the Chan-Paton factors. All representations

of Zk are reducible into one-dimensional representations characterized by an integer j, in

which the generator (3.1) acts by multiplication by ηj
k. The two original gauge groups

SU(r1) and SU(r2) of the original conifold theory are then decomposed into Zk represen-

tations where the j-representation has multiplicities N
(1)
j and N

(2)
j respectively.

In the parent theory the chiral multiplets Ai and Bi combined to form a non-chiral

theory. Now the generator (3.1) multiplies A1 by ηk, and so in the quotient theory A1

will descend to k bi-fundamental chiral multiplets, of which the jth connects the SU(N
(1)
j )

to the SU(N
(2)
j+1). Similarly A2 is in the conjugate representation so it connects SU(N

(1)
j )

to SU(N
(2)
j−1). The Zk symmetry group acts trivially on the Bi’s, so they both connect

the SU(N
(2)
j ) gauge group to the SU(N

(1)
j ). The quiver diagram is then a 2k-gon whose

perimeter is circumnavigated counterclockwise by edges, which are doubled when they

extend from an N (2) vertex to an N (1) vertex because there are two Bi’s. In addition there

are A1’s which extend clockwise. It can be seen in figure 1.

Chiral anomaly cancellation at the gauge group SU(N
(α+1)
j ) demands

2N
(α)
j = N

(α)
j+1 + N

(α)
j−1. (3.5)

Imposing the periodicity condition N0 = Nk, the equation (3.5) implies that all N (1)’s are

equal and also that all N (2)’s are equal. Therefore there are only two independent quantum

numbers, the number of D3-branes and the number of D5-branes wrapping a fixed two-

cycle. This corresponds to the fact that the second homology class of the base is rank one

by the Künneth formula:

H2(L(k, 1) × S2) = H0(L(k, 1)) ⊗ H2(S
2) ⊕ H1(L(k, 1)) ⊗ H1(S

2) ⊕ H2(L(k, 1)) ⊗ H0(S
2)

= Z ⊗ Z ⊕ Zk ⊗ 0 ⊕ 0 ⊗ Z

= Z (3.6)

3See the comment below (2.17).
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Figure 1: This is the quiver diagram for a chiral Z4 quotient of the conifold which acts on the

coordinates W by left multiplication by the matrix iσ3. It consists of 8 gauge groups, but chiral

anomaly cancellation demands that their ranks are determined by only two independent parameters,

corresponding to the number of D3-branes and the number of D5-branes wrapping the sole non-

trivial 2 -cycle in the base L(4, 1)× S2.

and so there is a single 2 -cycle on the base that may be wrapped by a D5-brane.

3.2 A singular family of chiral and non-chiral orbifolds

We will now consider a class of orbifolds of the conifold by an action of Zk × Zl. The

gauge theories of type IIB compactifications on these orbifolds were studied in [10], and

the geometry was investigated in [11]. The full quiver was found in the k = 2, l = 1 case

in [12]. We will see that, in the (X,Q) coordinates, one can understand the topology of the

singular base and its blow up. In particular we will see that the second Betti number of the

blown up base agrees with the number of anomaly-free D5-brane wrappings as calculated

in the gauge theory.

The Zk action is generated by the transformation

W −→ W ′ = UkWUk where Uk =

(
η2k 0

0 η2k

)
, (3.7)

where η2k is a 2kth root of unity. The action is non-chiral as it satisfies (2.17). In terms of

the components of W it reads

W =

(
w1 w2

w3 w4

)
, w1 → ηkw1, w4 → ηkw4, (w2, w3) → (w2, w3). (3.8)
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The Zl action is also non-chiral and is given by

W −→ W ′ = UlWU †
l where Ul =

(
η2l 0

0 η2l

)
(3.9)

or, in terms of the conifold components

(w1, w4) → (w1, w4), w2 → ηlw2, w3 → ηlw3. (3.10)

To avoid writing both actions on W , we will restrict our attention to the case in which

k and l are relatively prime. The product of the cyclic symmetries is now a single cyclic

group

Zk × Zl = Zkl, (3.11)

which is generated by a single element

X → UkUlXU †
l Uk =

(
η2kη2l 0

0 η2kη2l

)
X

(
η2kη2l 0

0 η2kη2l

)

Q → U †
kUlQU †

l Uk =

(
η2kη2l 0

0 η2kη2l

)
Q

(
η2kη2l 0

0 η2kη2l

)
, (3.12)

as one can derive from (3.7), (3.9) and (2.14). It is straightforward to see that the Zkl

action does not break the chiral symmetry if and only if k = 1 or l = 1, when it reduces

to (3.9) or (3.7) respectively.

The action (3.12) on Q is easy to interpret. It is the conjugation of special unitary

traceless matrix by an exponent of σ3, which corresponds to a rotation of the two-sphere

S2
Q parametrized by Q about the z axis. This means that the action on S2

Q has two fixed

points, the north and south poles. The angle of the rotation is irrelevant and depends

on our representatives of the roots of unity, the important quantity is the order of the

rotation, that is the number of times that it must be performed for the sphere to return to

its original position. The order is kl. This does not mean that there will necessarily be a

singularity at each pole, as the action acts simultaneously on the 3-sphere parameterized

by X. Singularities will occur where both X and Q are fixed.

The action (3.12) on the 3-sphere parametrized by X is more difficult to interpret.

It will be useful to decompose the 3-sphere as the Hopf fibration πP : S3 → S2
P over a

2-sphere which we name S2
P using the projection map

πP : S3 −→ S2
P : X 7→ P = iXσ3X

†. (3.13)

This choice of projection map differs from (2.9) and it is not canonical, since one may use

any linear combination of the Pauli σ matrices with determinant equal to −1. However,

the choice of πP in (3.13) will lead to simplifications because σ3 commutes with the group

actions, and in particular with UL = UkUl. This means that the group action on P is just

P −→ P ′ = ULPU †
L =

(
η2kη2l 0

0 η2kη2l

)
P

(
η2kη2l 0

0 η2kη2l

)
(3.14)
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S
2
P

S
2
P

S
2
Q

SQ
2SP

2

S
1
fiber

S
2
Q

Z

Z

S
1
fiber

of
North Pole

of
South Pole

6
action

of
North Pole

of
South Pole0

2 actionZ

0

action
3

0

(180  rotation)

(60  rotation)

(120  rotation)

Figure 2: This is the action of g on T 1,1 in the case of the k = 3, l = 2, Z6 chiral orbifold of the

conifold, which is a circle bundle over the product of two-spheres S2

P × S2

Q. It rotates each two-

sphere by 60 degrees, leaving four fixed points at the products of the poles. At these fixed points

the group Z6 does not act freely on the circle fiber. Instead, at the two fixed points corresponding

to the north pole of S2

P only a Z3 subgroup acts freely, while at the other two fixed points, which

correspond to the south pole of S2

Q, only a Z2 subgroup acts freely.

which, like the group action on Q, is simply a rotation about the z axis.

The group action on the product of the two 2-spheres S2
P ×S2

Q is a rotation about the

z-axis of each, and so it has four fixed points corresponding to the products of the north

and south P and Q poles. This does not mean that the total action on T 1,1 has four fixed

points, because T 1,1 is a circle bundle over S2
P ×S2

Q and the action is in general non-trivial

on the circle fiber. To find and analyze the singularities one then needs to understand the

group action on the circle fiber above the four products of poles. Note that every fiber is

a circle of the form Xeiφσ3 , for some X, which is parametrized by φ. In particular every

point on this circle projects to the same point

πP (X) = πP (Xeiφσ3) = iXσ3X
†. (3.15)

As the circle Xeiφσ3 is only non-trivially fibered over S2
P , the circle action will be the same

at the north and south poles of S2
Q, and so we need only understand the action on φ at the

poles of S2
P .

We will define the north pole of S2
P to be the point

P = iσ3, (3.16)

where X = eiφσ3 is the circle fibered over the north pole in S3. Using (3.12) one can now

find the group action on X at the circle above the north pole. If for concreteness we set

– 9 –
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ηp = e2πi/p then

X = eiφσ3 → X ′ =

(
η2kη2l 0

0 η2kη2l

)
eiφσ3

(
η2kη2l 0

0 η2kη2l

)

=

(
ei(φ+2π/k) 0

0 e−i(φ+2π/k)

)
(3.17)

and so we see that the action on φ is

φ −→ φ + 2π/k. (3.18)

Therefore the generator g of Zkl does not fix any point φ in the fiber over the north pole

of S2
P and at either pole of S2

Q, instead it translates φ around the circle fiber by 2π/k as

in (3.18). However, if l 6= 1 then the element gk is a non-trivial element of the group Zkl

and it does fix the position on the fiber of every point φ. The element gk is order l, and

so we find that the entire fiber is a Al−1 singularity. In fact, there are two circles of Al−1

singularity, one at the north pole of P and the north pole of Q and one at the north pole

of P and the south pole of Q. These two circles of Al−1 singularity were found in [10].

Similarly one may compute the action of the group on the circle fibered over the south

pole of S2
P , corresponding to the point

P = −iσ3, X = iσ1e
iφσ3 . (3.19)

Now X anti-commutes with σ3, and so the ηk’s from the right and left action cancel, instead

of the η′ls as in the north pole case (3.17). This means that g translates φ by 2π/l and so

one finds a circle of Ak−1 singularity fibered over the product of the south pole of S2
P with

the north pole of S2
Q and another fibered over the product of the south pole of S2

P with the

south pole of S2
Q. These actions are schematically displayed in figure 2.

In all, the quotient T 1,1/Zkl contains 2 circles of Ak−1 singularity and 2 circles of

Al−1 singularity, as found in [10]. Blowing up these singularities until the base becomes

smooth one expects to find l − 1 2 -cycles above the product of the two north poles, l − 1

2 -cycles above the P -north pole times the Q-south pole, k − 1 2 -cycles above the P -south

pole times the Q-north pole and k − 1 2 -cycles above the P -south pole times the Q-south

pole. The 2 -cycles at Q-north and Q-south poles are not homologous. To see this, recall

that according to the McKay correspondence the intersection matrix in the 4-dimensional

base of the 2 -cycles at one pole is the weight lattice of An (in our case n = k − 1 and

n = l− 1). In the full 5-dimensional space one instead must consider intersection numbers

of 2 -cycles and 3 -cycles. Notice that each 2 -cycle in the blowup corresponds to a unique

3 -cycle which is its orbit with respect to the circle action. The intersection numbers in

the 5-dimensional space of the 2 -cycles with the corresponding 3 -cycles are again given by

the weight lattice of An. On the other hand, as they are separate in Q, the intersection

number of any Q-northern 2 -cycle with any 3 -cycle which is the product of a Q-southern

2 -cycle with the circle is zero. As the weights of An are linearly independent, no linear

combination is zero and so no northern cycle is a linear combination of southern cycles and

vice versa.
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Figure 3: This is the quiver diagram for k = 3, l = 2, Z6 chiral orbifold of the conifold. It consists

of 12 gauge groups, but chiral anomaly cancellation demands that their ranks are determined by

only 8 independent parameters, indicating the presence of 2k + 2l − 3 = 7 two-cycles on which

fractional branes can be wrapped.

To summarize, one expects 2(k+ l)−4 different 2 -cycles to be created by the blow-up.

There was already one 2 -cycle in T 1,1, and so the total number of 2 -cycles is expected to

be4

N = 2(k + l) − 3. (3.20)

We will now compare the result for N in (3.20) with the number of independent gauge

groups in the corresponding quiver theories.

To find the corresponding quiver theories, we again decompose W into a dyadic product

of two vectors as in (2.15). An action of g on the components of the factors is easily found,

as OL multiplies A from the left and OR multiplies B from the right. However the vectors

A and B are not entirely determined by W , they may be rotated in opposite directions.

We will use this freedom to define the simpler action

A1 → ηkηlA1, A2 → A2, B1 → ηlB1, B2 → ηkB2. (3.21)

As in the previous example, we decompose the original gauge group SU(r1) × SU(r2)

into one dimensional representations of the orbifold group Zkl. We let N
(α=1,2)
j denote the

multiplicity of the representation ρ(g) = ηj
lk in the parent gauge group SU(rα). A node in

the quiver diagram corresponds to one of these representations, and so the quiver diagram

4This result follows also from the toric diagram of the orbifold, which is given by a k × l box (see [10]).
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will have 2kl nodes. The action of g on A1 in (3.21) is the element k + l ∈ Zkl and so the

kl chiral multiplets descending from A1 extend from the node N
(1)
j to the node N

(2)
j+k+l.

Similarly the action on A2 is the identity element 0 and so the corresponding arrows extend

from N
(1)
j to N

(2)
j . The action on B1 is the element −k and so the B1 arrows extend from

N
(2)
j to N

(1)
j−k. Finally the B2 arrows extend from N

(2)
j to N

(1)
j−l. This quiver is illustrated

in figure 3. Notice that if l = 1 then there are only k components in each group and so

the above indices should be read modulo k, which implies that A1 arrows run anti-parallel

to B2 arrows and A2 arrows to B1, therefore the theory is non-chiral as we have seen.

Similarly if k = 1 then A1 and B1 are anti-parallel as are A2 and B2.

The chiral anomaly cancellation condition, that the same number of arrows enter each

mode as leave, is that

N
(α)
j + N

(α)
j+k+l = N

(α)
j+k + N

(α)
j+l, (3.22)

where α = 1, 2 and the subscripts are understood to be modulo kl. Of these kl conditions

on kl ranks for each value of α, only kl − k − l + 1 are linearly independent. This leaves

k + l − 1 free ranks in each parent gauge group, for a total of 2k + 2l − 2 choices of ranks.

Notice, for example that if you know k + l consecutive values of N
(α)
j at fixed α then you

can use (3.22) to extend this set arbitrarily far in any direction, but there will be a single

constraint which enforces periodicity, leaving k + l − 1 free parameters at each α. The

overall rank corresponds to the D3-brane charge, leaving 2k + 2l − 3 choices determined

by the consistent D5-brane wrappings on 2 -cycles, in agreement with (3.20). We provide

a more rigorous proof of this statement in appendix A.

4. Conclusions

In this note we have provided global coordinates for the S2 and S3 whose Cartesian prod-

uct is diffeomorphic to T 1,1, the base of the conifold. We have seen that several classes of

orbifolds of the conifold are easily described in these coordinates, and we have used them

to find the topology of a one-parameter infinite family of chiral orbifolds, and the corre-

sponding quiver gauge theories. We have calculated the second Betti numbers of several

families of orbifolds of the conifold and have compared them successfully with gauge theory

expectations.

It would be of interest to extend this decomposition to Y p,q and La,b,c spaces, as the S3

in these cases is swept out by a generalization of the NS5-brane in [4], as will be elaborated

in [13].

A. Counting independent ranks

In this appendix we will demonstrate that the adjacency matrix defined by the rela-

tion (3.22) has 2(k+ l)−2 independent zero eigenvectors. One of these eigenvectors assigns

identical rank to all the gauge groups, so it describes physical D3-branes. The remaining

2(k + l) − 3 zero eigenvectors correspond to fractional D3-branes which are D5-branes

wrapping the 2 -cycles that we have found in the last section.
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First, an arrow which extends k spaces clockwise acts on the Nj via U j, where U is

the kl × kl shift matrix

U =




0 1 0 0 0 . . .

0 0 1 0 0 . . .
...

...
...

. . .

0 0 0 . . . 0 1

1 0 0 . . . 0 0




. (A.1)

Now the 2kl × 2kl adjacency matrix C corresponding to (3.22) is

C =

(
0 D

−DT 0

)
, where D ≡ 1 + Uk+l − Uk − U l. (A.2)

Furthermore, a zero eigenvector of C is may be decomposed as v = (v1, v2), where v1 and

v2 are left and right zero eigenvectors of the matrix D. Notice that the eigenvalues of the

kl× kl shift matrix U are ωi=1,...,kl, where ω is defined by ωkl = 1. Thus for an eigenvector

vω corresponding to the eigenvalue ω we have

Dvω =
(
1 + ωk+l − ωk − ωl

)
vω = (1 − ωk)(1 − ωl)vω. (A.3)

We conclude therefore that for vw to be a zero eigenvector we need ωk = 1 or ωl = 1. This

gives (k + l − 1) independent vectors since for the vector (1, 1, . . . , 1) both conditions are

satisfied simultaneously. After a discrete Fourier transform one obtains a basis for the zero

eigenvectors in which all entries are 0 or 1. This is consistent with the integrality of the

ranks of the gauge groups. Finally, we recall that a zero eigenvector of C is determined by

two independent zero eigenvectors of D, so the total multiplicity is 2(k + l)−2, completing

our proof.
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